

Class QZ 5

① Simplify:
$$(3x-7)(3x+7)=9x^2+21x-21x-49$$

$$= (9x^2-49)$$
② Simplify: $(x^3)^3$

$$= \frac{x^{3\cdot3}}{x^{4\cdot2}} = \frac{x^9}{x^8} = x^{9-8} = x^1$$

$$= [x]$$
② Simplify: $(x^3)^3$
② Solve: $(x-8)(x+6)=0$

$$= x^{3\cdot3} = x^9 = x^{9-8} = x^1$$

$$= [x]$$
② Solve: $(x-8)(x+6)=0$

$$= x^{9-8} = x^{1-6}$$

$$= x^{1-6}$$

$$= x^{1-6}$$

$$= x^{1-6}$$

$$f(x) = \chi^{2} + 5\chi$$
Find

1) $f(0) = 0^{2} + 5(0)$

$$= 0 + 0$$

$$= 0$$

$$= 0$$
3) $f(2x) = (2x)^{2} + 5(2x)$

$$= (x-2)(x-2) + 5(x-2)$$

$$= (x^{2} + x - 6)$$

Find

$$\begin{cases}
(x) = \begin{cases}
1x-3 \\
\hline{)x+4} & \text{if } x \ge 0 \\
\hline{|x-3|} & \text{|x+4|}
\end{cases}$$

$$\begin{cases}
(x) = \begin{cases}
1 + 4 \\
\hline{)x+4} & \text{|x-3|}
\end{cases}$$

$$\begin{cases}
(x) = \begin{cases}
1 + 4 \\
\hline{)x+4} & \text{|x-3|}
\end{cases}$$

$$\begin{cases}
(x) = \begin{cases}
1 + 4 \\
\hline{)x+4} & \text{|x-3|}
\end{cases}$$

$$\begin{cases}
(x) = \begin{cases}
1 + 4 \\
\hline{)x+4} & \text{|x-3|}
\end{cases}$$

$$\begin{cases}
(x) = \begin{cases}
1 + 4 \\
\hline{)x+4} & \text{|x-3|}
\end{cases}$$

$$\begin{cases}
(x) = \begin{cases}
1 + 4 \\
\hline{)x+4} & \text{|x-3|}
\end{cases}$$

$$\begin{cases}
(x) = \begin{cases}
1 + 4 \\
\hline{)x+4} & \text{|x-3|}
\end{cases}$$

$$\begin{cases}
(x) = \begin{cases}
1 + 4 \\
\hline{)x+4} & \text{|x-3|}
\end{cases}$$

$$\begin{cases}
(x) = \begin{cases}
1 + 4 \\
\hline{)x+4} & \text{|x-3|}
\end{cases}$$

$$\begin{cases}
(x) = \begin{cases}
1 + 4 \\
\hline{)x+4} & \text{|x-3|}
\end{cases}$$

$$\begin{cases}
(x) = \begin{cases}
1 + 4 \\
\hline{)x+4} & \text{|x-3|}
\end{cases}$$

$$\begin{cases}
(x) = \begin{cases}
1 + 4 \\
\hline{)x+4} & \text{|x-3|}
\end{cases}$$

$$\begin{cases}
(x) = \begin{cases}
1 + 4 \\
\hline{)x+4} & \text{|x-3|}
\end{cases}$$

$$\begin{cases}
(x) = \begin{cases}
1 + 4 \\
\hline{)x+4} & \text{|x-3|}
\end{cases}$$

$$\begin{cases}
(x) = \begin{cases}
1 + 4 \\
\hline{)x+4} & \text{|x-3|}
\end{cases}$$

$$\begin{cases}
(x) = \begin{cases}
1 + 4 \\
\hline{)x+4} & \text{|x-3|}
\end{cases}$$

$$\begin{cases}
(x) = \begin{cases}
1 + 4 \\
\hline{)x+4} & \text{|x-3|}
\end{cases}$$

$$\begin{cases}
(x) = \begin{cases}
1 + 4 \\
\hline{)x+4} & \text{|x-3|}
\end{cases}$$

$$\begin{cases}
(x) = \begin{cases}
1 + 4 \\
\hline{)x+4} & \text{|x-3|}
\end{cases}$$

$$\begin{cases}
(x) = \begin{cases}
1 + 4 \\
\hline{)x+4} & \text{|x-3|}
\end{cases}$$

$$\begin{cases}
(x) = \begin{cases}
1 + 4 \\
\hline{)x+4} & \text{|x-3|}
\end{cases}$$

$$\begin{cases}
(x) = \begin{cases}
1 + 4 \\
\hline{)x+4} & \text{|x-3|}
\end{cases}$$

$$\begin{cases}
(x) = \begin{cases}
1 + 4 \\
\hline{)x+4} & \text{|x-3|}
\end{cases}$$

$$\begin{cases}
(x) = \begin{cases}
1 + 4 \\
\hline{)x+4} & \text{|x-3|}
\end{cases}$$

$$\begin{cases}
(x) = \begin{cases}
1 + 4 \\
\hline{)x+4} & \text{|x-3|}
\end{cases}$$

$$\begin{cases}
(x) = \begin{cases}
1 + 4 \\
\hline{)x+4} & \text{|x-3|}
\end{cases}$$

$$\begin{cases}
(x) = \begin{cases}
1 + 4 \\
\hline{)x+4} & \text{|x-3|}
\end{cases}$$

$$\begin{cases}
(x) = \begin{cases}
1 + 4 \\
\hline{)x+4} & \text{|x-3|}
\end{cases}$$

$$\begin{cases}
(x) = \begin{cases}
1 + 4 \\
\hline{)x+4} & \text{|x-3|}
\end{cases}$$

$$\begin{cases}
(x) = \begin{cases}
1 + 4 \\
\hline{)x+4} & \text{|x-3|}
\end{cases}$$

$$\begin{cases}
(x) = \begin{cases}
1 + 4 \\
\hline{)x+4} & \text{|x-3|}
\end{cases}
\end{cases}$$

$$\begin{cases}
(x) = \begin{cases}
1 + 4 \\
\hline{)x+4} & \text{|x-3|}
\end{cases}
\end{cases}$$

$$\begin{cases}
(x) = \begin{cases}
1 + 4 \\
\hline{)x+4} & \text{|x-3|}
\end{cases}
\end{cases}$$

$$\begin{cases}
(x) = \begin{cases}
1 + 4 \\
\hline{)x+4} & \text{|x-3|}
\end{cases}
\end{cases}
\end{cases}$$

$$\begin{cases}
(x) = \begin{cases}
1 + 4 \\
\hline{)x+4} & \text{|x-3|}
\end{cases}
\end{cases}
\end{cases}$$

$$\begin{cases}
(x) = \begin{cases}
1 + 4 \\
\hline{)x+4} & \text{|x-3|}
\end{cases}
\end{cases}
\end{cases}$$

$$\begin{cases}
(x) = \begin{cases}
1 + 4 \\
\hline{)x+4} & \text{|x-3|}
\end{cases}
\end{cases}
\end{cases}
\end{cases}$$

$$\begin{cases}
(x) = \begin{cases}
1 + 4 \\
\hline{)x+4} & \text{|x-3|}
\end{cases}
\end{cases}
\end{cases}$$

$$\begin{cases}
(x) = \begin{cases}
1 + 4 \\
\hline{)x+4} & \text{|x-3|}
\end{cases}
\end{cases}
\end{cases}
\end{cases}$$

$$\begin{cases}
(x) = \begin{cases}
1 + 4 \\
\hline{)x+4} & \text{|x-3|}
\end{cases}
\end{cases}
\end{cases}
\end{cases}$$

$$\begin{cases}
(x) = \begin{cases}
1 + 4 \\
\hline{)x+4} & \text{|x-3|}
\end{cases}
\end{cases}
\end{cases}
\end{cases}$$

$$\begin{cases}
(x) = \begin{cases}
1 + 4 \\
\hline{)x+4} & \text{|x-3|}
\end{cases}
\end{cases}
\end{cases}
\end{cases}$$

$$\begin{cases}
(x) = \begin{cases}
1 + 4 \\
\hline{)x+4} & \text{|x-3|}
\end{cases}
\end{cases}
\end{cases}
\end{cases}$$

$$\begin{cases}
(x) = \begin{cases}
1 + 4 \\
\hline{)x+4} & \text{|x-3|}
\end{cases}
\end{cases}
\end{cases}
\end{cases}
\end{cases}$$

$$\begin{cases}
(x) = \begin{cases}
1$$

$$S(x) = 2x + 5 \qquad g(x) = x - 5$$
Find

1) $S(0) = 2(0) + 5$

$$= 5$$

$$= 5$$

3) $(S + g)(x) = S(x) + g(x)$

$$= 2x + 5 + 2x + 5$$

$$= 2x + 5 - (x - 5)$$

$$= 2x + 5 - x + 5$$
5) $(S + g)(x) = S(x) \cdot g(x)$

$$= (2x + 5)(x - 5)$$

$$= 2x^2 - 10x + 5x - 25$$

$$= 2x^2 - 5x - 25$$

6)
$$\left(\frac{5}{9}\right)(x) = \frac{5(x)}{9(x)}$$
; $9(x) \neq 0$ $7\left(\frac{8}{5}\right)(x)$
= $\frac{2x + 5}{x - 5}$; $x \neq 5$ $=\frac{3(x)}{5(x)}$; $5(x) \neq 0$
8) $(5 \circ 9)(x) = 5 (9(x))$
Composition = $2(9(x)) + 5$
= $2(x - 5) + 5 = 2x - 10 + 5$
= $2x - 5$

1)
$$f(x) = \frac{x}{x-4}$$
 $x-4+0$

2)
$$g(x) = \frac{x-1}{x+3}$$

(All reals except 4)

3)
$$h(x) = \frac{4}{x^2-100}$$

$$\chi^{2} - 100 \pm 0$$
 $\chi^{2} \pm 100 \quad \chi \pm 10$

Factor Completely:

1)
$$\chi^2 - 5\chi$$

$$= \chi(\chi - 5)$$

2)
$$3x^2 + 15x$$

= $3x(x + 5)$

3)
$$\chi^2 - 5\chi - 24$$

 $(\chi + 3)(\chi - 8)$
 $(2\chi + 5)(\chi + 1)$

4)
$$2x^{2} + 7x + 5$$

 $(2x + 5)(x + 1)$

Simplify

1)
$$\chi^{5} \cdot \chi^{3} = \chi^{5+3}$$

2) $\frac{\chi^{5}}{\chi^{3}} = \chi^{5+3}$

2) $\frac{\chi^{5}}{\chi^{3}} = \chi^{5+3}$

2) $\frac{\chi^{5}}{\chi^{3}} = \chi^{5+3}$

3) $(\chi^{5})^{3}$

4) $(-2\chi^{3})^{5}$

$$= \chi^{5\cdot 3} = \chi^{15}$$

$$= (-2)^{5} \cdot (\chi^{3})^{5}$$

$$= (-32\chi^{15})$$

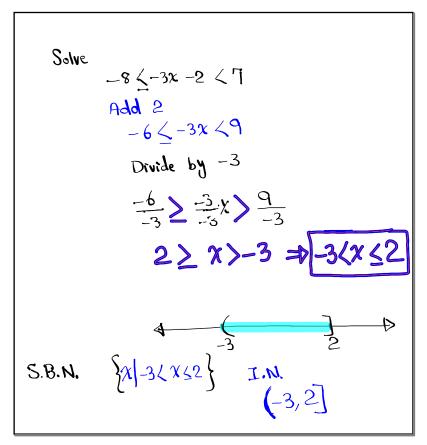
Solve
$$2(x-1) - 8 < 4x - 30$$

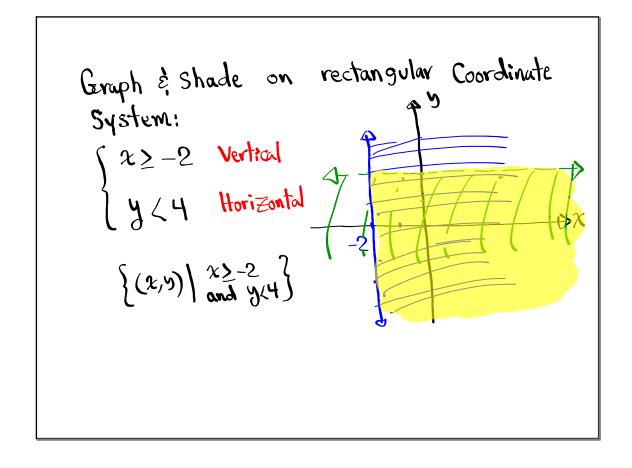
 $2x - 2 - 8 < 4x - 30$
 $2x - 10 < 4x - 30$
 $2x - 4x < -30 + 10$
 $-2x < -20$
Divide by -2
 $-2x > -20$
 $-2x > -20$
 $-2x > -20$
Interval Notation $(10, \infty)$

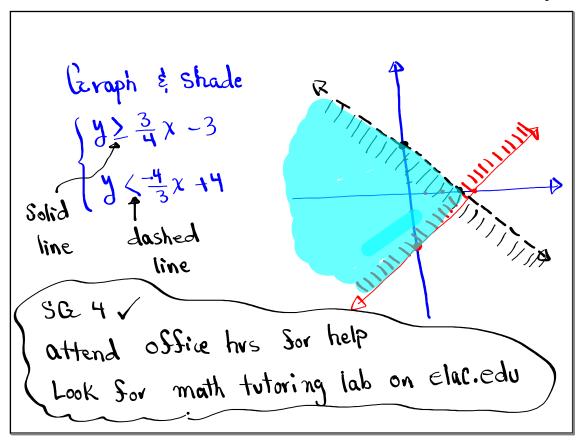
Solve
$$\frac{2}{3}x - \frac{1}{6} \ge \frac{3}{4}x + \frac{1}{2}$$
 Hint: use LCD to LCD=12 Clear Multiply by LCD Stactions

12. $\frac{2}{3}x - \frac{1}{6} \ge \frac{3}{4}x + \frac{1}{2} = \frac{1}{2}$

8x $-2 \ge 9x + 6$ Divide by -1


8x $-9x \ge 6+2$ $-\frac{x}{2} \le \frac{8}{-1}$


-x ≥ 8


S.B.N. $\{2 \mid x \le -8\}$

T.N. $(-\infty, -8]$

Solve
$$-5 \le 2x + 1 < 17$$

Subtract 1
 $-5 - 1 \le 2x + 1 - 1 < 17 - 1$
 $-6 \le 2x < 16$
Divide by 2
 $-3 \le x < 8$
S.B.N.
 $\{x \mid -3 \le x < 8\}$
I.N. $[-3,8]$

Absolute Value Equations:

Type I:
$$|ax + b| = K$$

1) If $|K| < 0 \implies NO$ Solution

2) If $|K| \ge 0 \implies Solve$
 $|ax + b| = K|$

Ex: Solve $|2x - 1| = -5 \implies NO$ Solution
$$|ax + b| = K|$$

$$|ax + b|$$

Solve
$$|3x+2|$$
 $3x+2=7$ OR $3x+2=-7$ $3x=5$ $3x=-9$ $x=\frac{-9}{3}=-3$

Type II:
$$|ax + b| = |cx + d|$$

Solve $|ax + b| = |cx + d|$

Ex: Solve $|2x - 7| = |x - 8|$
 $|x - 15|$
 $|x - 15|$
 $|x - 15|$

Solve
$$|x + 9| = |x - 9|$$

 $x + 9 = x - 9$ OR $x + 9 = -(x - 9)$
 $x - x = -9 - 9$ $x + 9 = -x + 9$
 $0 = -18$ $x + x = 9 - 9$
 $2x = 0$
 $x = \frac{0}{2}$ $x = 0$

1) Solve
$$|2x+3|+5=0$$
 $|2x+3|=-5$
 $|2x+3|=-5$
Always
isolate
Abs. Value

2) Solve $|3x-2|=3$
 $|3x-2|=7$
 $|3x-2|=7$
 $|3x=9$
 $|x=3$
 $|x=3$
 $|x=3$

3) Solve
$$|3x + 7| = |x - 9|$$
 $3x + 7 = x - 9$
 $3x + 7 = x - 9$
 $3x - x = -9 - 7$
 $2x = -16$
 $3x + x = 9 - 7$
 $x = -8$
 $x = 2$
 $x = 2$
 $x = 2$
 $x = 2$

Simplify

1)
$$\frac{x^2+5x}{2^2-25} = \frac{x(x+5)}{(x+5)(x-5)} = \frac{x}{x-5}$$
 $A^2 - B^2 = (A+B)(A-B)$

2) $\frac{8}{x^2-4x+3} \cdot \frac{2}{x^2-9} = \frac{8}{x^2-4x+3} \cdot \frac{2}{2}$
 $= \frac{4}{(x+5)(x-1)} \cdot \frac{(x+3)(x+3)}{2} = \frac{4(x+3)}{x-1}$

3)
$$\frac{3}{4} - \frac{1}{5} = \frac{3 \cdot 5}{4 \cdot 5} - \frac{1 \cdot 4}{5 \cdot 4}$$

$$= \frac{15}{20} - \frac{4}{20} = \frac{15 - 4}{20}$$

$$= \frac{11}{20}$$

$$= \frac{1}{20}$$

$$= \frac{1}{20}$$

$$= \frac{1}{20}$$

$$= \frac{3(x+4) - 1(x-5)}{(x+4)(x-5)}$$

$$= \frac{3(x+4) - 1(x-5)}{(x-5)(x+4)}$$

$$= \frac{3x+12-x+5}{(x-5)(x+4)}$$

$$= \frac{2x+17}{(x-5)(x+4)}$$

Graph & Shade

$$5x-3y+2 \ge x+4y-5$$
 $-3y-4y \ge x-5-5x-2$
 $-3y-4y \ge x-5-5x-2$
 $-3y-4x-7$
 $-7y \ge -4x-7$
 $-7y \ge -4x-7$
 $-7y \le -7x-7$
 $-7y \ge$

$$f(x) = 4x - 3 \qquad g(x) = x + 5$$

$$9(x)=x+5$$

2)
$$(f-g)(x)$$

4)
$$(\frac{5}{8})(x)$$